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Information Extraction

Extract structured information from unstructured data
Typical subtasks

Named Entity Recognition: person, location, organization
names
Coreference Identification: noun phrases refering to the
same object
Relation extraction: eg. Person works for Organization

Ultimate tasks
Document Summarization
Question Answering
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Complex Prediction Problems

Complex tasks consisting of multiple structured subtasks
Real world problems too complicated for solving at once
Ubiquitous in many domains

Natural Language Processing
Computational Biology
Computational Vision
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Complex Prediction Example

Motion Tracking in Computational Vision
Subtask: Identify joint angles of human body
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Complex Prediction Example

3-D protein structure prediction in Computational Biology
Subtask: Identify secondary structured Prediction from
amino-acid sequence

AAYKSHGSGDYGDHDVGHPTPGDPWVEPDYGINVYHSDTYSGQW
AAYKSHGSGDYGDHDVGHPTPGDPWVEPDYGINVYHSDTYSGQW
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Standard Approach to Complex Prediction

Pipeline Approach
Define intermediate/sub-tasks
Solve them individually or in a cascaded manner
Use output of subtasks as features (input) for target task
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Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF. Although the

hidden nodes can depend on observations at any time step, for clarity we have shown

links only to observations at the same time step.

parameter estimation using BP (Section 3.3.2), and cascaded parameter estimation (Section 3.3.3).

Then, in Section 3.4, we describe inference and parameter estimation in marginal DCRFs. In Sec-

tion 4, we present the experimental results, including evaluation of factorial CRFs on noun-phrase

chunking (Section 4.1), comparison of BP schedules in FCRFs (Section 4.2), evaluation of marginal

DCRFs on both the chunking data and synthetic data (Section 4.3), and cascaded training of DCRFs

for transfer learning (Section 4.4). Finally, in Section 5 and Section 6, we present related work and

conclude.

2. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are condi-

tional probability distributions that factorize according to an undirected model. CRFs are defined as

follows. Let y be a set of output variables that we wish to predict, and x be a set of input variables

that are observed. For example, in natural language processing, x may be a sequence of words

x = {xt} for t = 1, . . . ,T and y = {yt} a sequence of labels. Let G be a factor graph over y and x

with factors C = {!c(yc,xc)}, where xc is the set of input variables that are arguments to the local
function !c, and similarly for yc. A conditional random field is a conditional distribution p! that

factorizes as

p!(y|x) =
1

Z(x)!
c∈C

!c(yc,xc),

where Z(x) = "y#c∈C!c(yc,xc) is a normalization factor over all state sequences for the sequence
x. We assume the potentials factorize according to a set of features { fk}, as

!c(yc,xc) = exp

(

"
k

$k fk(yc,xc)

)
,

so that the family of distributions {p!} is an exponential family. In this paper, we shall assume
that the features are given and fixed. The model parameters are a set of real weights %= {$k}, one
weight for each feature.

Many previous applications use the linear-chain CRF, in which a first-order Markov assump-

tion is made on the hidden variables. A graphical model for this is shown in Figure 1. In this case,

the cliques of the conditional model are the nodes and edges, so that there are feature functions

696

where for POS and for NER where x :x+POS tags
Problems:

Error propagation
No learning across tasks
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New Approach to Complex Prediction

Proposed approach:
Solve tasks jointly discriminatively

Decompose multiple structured tasks
Use methods from multitask learning

Good predictors are it smooth
Restrict the search space for smooth functions of all tasks

Device targeted approximation methods
Standard approximation algorithms do not capture specifics
Dependencies within tasks are stronger than dependencies
across tasks

Advantages
Less/no error propagation
Enables learning across tasks
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Structured Output (SO) Prediction

Supervised Learning
Given input/output pairs (x , y) ∈ X × Y

Y = {0, . . . ,m},Y = <

Data from unknown/fixed distribution D over X × Y
Goal: Learn a mapping h : X → Y
State-of-the art are discriminative, eg. SVMs, Boosting

In Structured Output prediction,
Multivariate response variable with structural dependency.
|Y|: exponential in number of variables
Sequences, tree, hierarchical classification, ranking
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SO Prediction

Generative framework: Model P(x , y)

Advantages: Efficient learning and inference algorithms
Disadvantages: Harder problem, Questionable
independence assumption, Limited representation

Local approaches: eg. [Roth, 2001]
Advantages: Efficient algorithms
Disadvantages: Ignore/problematic long range
dependencies

Discriminative learning
Advantages: Richer representation via kernels, capture
dependencies
Disadvantages: Expensive computation (SO prediction
involves iteratively computing marginals or best labeling
during training)
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Formal Setting

Given S = ((x1, y1), . . . , (xl , yn))

Find h : X → Y,h(x) = argmaxy F (x , y)

Linear discriminant function F : X × Y → R

Fw (x , y) = 〈ψ(x , y),w〉

Cost function: ∆(y , y ′) ≥ 0 eg. 0-1 loss, Hamming loss
Canonical example: Label sequence learning, where both
x and y are sequences

SUTTON, MCCALLUM AND ROHANIMANESH

Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF. Although the

hidden nodes can depend on observations at any time step, for clarity we have shown

links only to observations at the same time step.

parameter estimation using BP (Section 3.3.2), and cascaded parameter estimation (Section 3.3.3).

Then, in Section 3.4, we describe inference and parameter estimation in marginal DCRFs. In Sec-

tion 4, we present the experimental results, including evaluation of factorial CRFs on noun-phrase

chunking (Section 4.1), comparison of BP schedules in FCRFs (Section 4.2), evaluation of marginal

DCRFs on both the chunking data and synthetic data (Section 4.3), and cascaded training of DCRFs

for transfer learning (Section 4.4). Finally, in Section 5 and Section 6, we present related work and

conclude.

2. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are condi-

tional probability distributions that factorize according to an undirected model. CRFs are defined as

follows. Let y be a set of output variables that we wish to predict, and x be a set of input variables

that are observed. For example, in natural language processing, x may be a sequence of words

x = {xt} for t = 1, . . . ,T and y = {yt} a sequence of labels. Let G be a factor graph over y and x

with factors C = {!c(yc,xc)}, where xc is the set of input variables that are arguments to the local
function !c, and similarly for yc. A conditional random field is a conditional distribution p! that

factorizes as

p!(y|x) =
1

Z(x)!
c∈C

!c(yc,xc),

where Z(x) = "y#c∈C!c(yc,xc) is a normalization factor over all state sequences for the sequence
x. We assume the potentials factorize according to a set of features { fk}, as

!c(yc,xc) = exp

(

"
k

$k fk(yc,xc)

)
,

so that the family of distributions {p!} is an exponential family. In this paper, we shall assume
that the features are given and fixed. The model parameters are a set of real weights %= {$k}, one
weight for each feature.

Many previous applications use the linear-chain CRF, in which a first-order Markov assump-

tion is made on the hidden variables. A graphical model for this is shown in Figure 1. In this case,

the cliques of the conditional model are the nodes and edges, so that there are feature functions
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Maximum Margin Learning [Altun et al 03]

Define separation margin [Crammer & Singer 01]

γi = Fw (xi , yi)−max
y 6=yi

Fw (xi , y)

Maximize mini γi with small ‖w‖

!"#$%#!% &'()*+,-./01, "

!"#$%&%'!"()$*'+,"(*$*)

! !"#$%"&'"()*)+$,%&-)*.$%&/0*)--"*&1&2$%."*&345

2./01,-)0-'/-!34

! 6)7$-$8"&&&&&&&&&&&&&&

! 6$%$-$8"&Minimize
∑

i maxy 6=yi (1 + Fw (xi , y)− Fw (xi , yi))+ + λ‖w‖22
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Max-Margin Learning (cont.)

∑
i

max
y 6=yi

(1 + Fw (xi , y)− Fw (xi , yi))+ + λ‖w‖22

A convex non-quadratic program

min
w ,ξ

1
2
‖w‖22 +

C
n

∑
i

ξi

s.t . 〈w , ψ(xi , yi)〉 −max
y 6=y
〈w , ψ(xi , y)〉 ≥ 1− ξi , ∀i
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Max-Margin Learning (cont.)

∑
i

max
y 6=yi

(1 + Fw (xi , y)− Fw (xi , yi))+ + λ‖w‖22

A convex quadratic program

min
w ,ξ

1
2
‖w‖22 +

C
n

∑
i

ξi

s.t . 〈w , ψ(xi , yi)〉 − 〈w , ψ(xi , y)〉 ≥ 1− ξi , ∀i , ∀y 6= yi

Number of constraints exponential
Sparsity: Only a few of the constraints will be active
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Max-Margin Dual Problem

Using Lagrangian techniques, the dual:

max−1
2

∑
i,j,y ,y ′

αi(y)αj(y ′)δψ(xi , y)δψ(xj , y ′) +
∑
i,y

αi(y)

s.t. 0 ≤ αi(y),
∑
y 6=yi

αi(y) ≤ C
n
, ∀i

where δψ(xi , y) = ψ(xi , yi)− ψ(xi , y)

Use the structure of equality constraints
Replace the inner product with a kernel for implicit
non-linear mapping
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Max-Margin Optimization

Exploit sparseness and the structure of constraints by
incrementally adding constraints (cutting plane algorithm)
Maintain a working set Yi ⊆ Y for each training instance
Iterate over training instance
Incrementally augment (or shrink) working set Yi

ŷ = argmax
y∈Y−yi

F (xi , y) via Dynamic Programming

F (xi , yi)− F (xi , ŷ) ≤ 1− ε?

Optimize over Lagrange multipliers αi of Yi
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Max-Margin Cost Sensitivity

Cost function ∆ : Y × Y → <
Multiclass 0/1 loss
Sequences Hamming loss
Parsing (1-F1)

Extend max-margin framework for cost sensitivity
(Taskar et.al. 2004)

max
y 6=yi

(∆(yi , y) + Fw (xi , y)− Fw (xi , yi ))+

(Tsochantaridis et.al. 2004)

max
y 6=yi

∆(yi , y)(1 + Fw (xi , y)− Fw (xi , yi ))+
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Example: Sequences

!"#$%#!% &'()*+,-./01, $2

!"#$%&'()*'+,'-.'/

! !"#$%&"'($)*("+,'-*%'.%,/.0'*1$%.#"*+

! 2$)*/1*3$'-$.#4%$3'"+#*'#"/$

! 56*'#71$3'*-'-$.#4%$3
" 8&3$%9.#"*+':';.&$;<

" =.&$;':';.&$;<

!"#$%#!% &'()*+,-./01, $2

!"#$%&'()*'+,'-.'/

! !"#$%&"'($)*("+,'-*%'.%,/.0'*1$%.#"*+

! 2$)*/1*3$'-$.#4%$3'"+#*'#"/$

! 56*'#71$3'*-'-$.#4%$3
" 8&3$%9.#"*+':';.&$;<

" =.&$;':';.&$;<
Viterbi decoding for argmax operation
Decompose features into time
ψ(x , y) =

∑
t (ψ(xt , yt ) + ψ(yt , yt−1))

Two types of features
Observation-label: ψ(xt , yt ) = φ(xt )⊗ Λ(yt )
Label-label: ψ(yt , yt−1) = Λ(yt )⊗ Λ(yt−1)
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Example: Sequences (cont.)

Inner product between two features separately

〈ψ(x , y), ψ(x̄ , ȳ))〉
=
∑
s,t

〈φ(xt ), φ(x̄s)〉δ(yt , ȳs) + δ(yt , ȳs)δ(yt−1, ȳs−1)

=
∑
s,t

k((xt , yt ), (x̄s, ȳs)) + k̃((yt , yt−1), (ȳs, ȳs−1))

Arbitrary kernels on x
Linear kernels on y
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Other SO Prediction Methods

Find w to minimize expected loss E(x ,y)∼D[∆(y ,hf (x))]

w∗ = argmin
w

l∑
i=1

L(xi , yi ,w) + λ‖w‖2

Loss functions
Hinge loss
Log-loss: CRF [Lafferty et al 2001]

L(x , y , f ) = −F (x , y) + log
∑
ŷ∈Y

exp(F (x , ŷ))

Exp-loss: Structured Boosting [Altun et al 2002]

L(x , y , f ) =
∑
ŷ∈Y

exp(F (x , ŷ)− F (x , y))
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Complex Prediction via SO PredictionSUTTON, MCCALLUM AND ROHANIMANESH

Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF. Although the

hidden nodes can depend on observations at any time step, for clarity we have shown

links only to observations at the same time step.

parameter estimation using BP (Section 3.3.2), and cascaded parameter estimation (Section 3.3.3).

Then, in Section 3.4, we describe inference and parameter estimation in marginal DCRFs. In Sec-

tion 4, we present the experimental results, including evaluation of factorial CRFs on noun-phrase

chunking (Section 4.1), comparison of BP schedules in FCRFs (Section 4.2), evaluation of marginal

DCRFs on both the chunking data and synthetic data (Section 4.3), and cascaded training of DCRFs

for transfer learning (Section 4.4). Finally, in Section 5 and Section 6, we present related work and

conclude.

2. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are condi-

tional probability distributions that factorize according to an undirected model. CRFs are defined as

follows. Let y be a set of output variables that we wish to predict, and x be a set of input variables

that are observed. For example, in natural language processing, x may be a sequence of words

x = {xt} for t = 1, . . . ,T and y = {yt} a sequence of labels. Let G be a factor graph over y and x

with factors C = {!c(yc,xc)}, where xc is the set of input variables that are arguments to the local
function !c, and similarly for yc. A conditional random field is a conditional distribution p! that

factorizes as

p!(y|x) =
1

Z(x)!
c∈C

!c(yc,xc),

where Z(x) = "y#c∈C!c(yc,xc) is a normalization factor over all state sequences for the sequence
x. We assume the potentials factorize according to a set of features { fk}, as

!c(yc,xc) = exp

(

"
k

$k fk(yc,xc)

)
,

so that the family of distributions {p!} is an exponential family. In this paper, we shall assume
that the features are given and fixed. The model parameters are a set of real weights %= {$k}, one
weight for each feature.

Many previous applications use the linear-chain CRF, in which a first-order Markov assump-

tion is made on the hidden variables. A graphical model for this is shown in Figure 1. In this case,

the cliques of the conditional model are the nodes and edges, so that there are feature functions
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Possible Solution: Treat complex prediction as a loopy
graph and use standard approximation methods
Shortcomings:

No knowledge of graph structure
No knowledge that tasks defined over same input space

Solution:
Dependencies within tasks more important than
dependencies across tasks. Use this for approximation
method
Restrict function class for each task via learning across
tasks
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Joint Learning of Multiple SO prediction [Altun 2008]

Tasks 1, . . . ,m
Learn a discriminative function T : X → Y1 × . . .Ym

T (x , y ; w , w̄) =
∑
`

[
F `(x , y `; w`) +

∑
`′

F ``′(y `, y `
′
; w , w̄)

]
.

where w` capture dependencies within individual tasks
w̄`,`′ capture dependencies across tasks
F ` defined as before
F ``′ linear functions wrt cliques assignments of tasks `, `′
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Joint Learning of Multiple SO prediction

Assume a low dimensional representation Θ shared across
all tasks [Argyriou et al 2007]

F `(x , y `; w`,Θ) =
〈

w`σ,Θ
Tψ(x , y `)

〉
Find T by discovering Θ and learning w , w̄

min
Θ,w ,w̄

r̂(Θ) + r(w) + r̄(w̄) +
m∑
`=1

n∑
i=1

L`(xi , y `i ; w , w̄ ,Θ),

r , r̄ regularization, eg. L2 norm
r̂ , eg. Frobenius norm, trace norm
L loss function, eg. Log-loss, hinge-loss
Optimization is not jointly convex over Θ and w , w̄
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Joint Learning of Multiple SO prediction

Via a reformulation, we get a jointly convex optimization

min
A,D,w̄

∑
`σ

〈
A`σ,D+A`σ

〉
+ r̄(w̄) +

m∑
`=1

n∑
i=1

L`(xi , y `i ; A, w̄).

Optimize iteratively wrt A, w̄ and D
Closed form solution for D
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Optimization

A and w̄ decomposes into tasks parameters
Optimize wrt each tasks parameters iteratively
Problem: F `,`′ is function of all other tasks
Solution: Loopy Belief Propagation like algorithm where
each clique assignment is approximated wrt current
parameters iteratively
Run DP for all other tasks, fix clique assignment values,
optimize wrt current task
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Algorithm

(pseudo-)probability values of the relevant clique assignments ψ(y!′
c′) become constant and

the loss term L(x,y!;A, w̄) can be simply optimized with respect to A!. and w̄!.. Similarly,
the regularization terms of both A and w̄ decompose into a! and w̄!. Then, one can use
the optimization techniques proposed in the relevant literature cited above, e. g. (11; 3).
For the case of log-likelihood optimization, Eq. (6c), which we use in our experiments, the
optimization can be performed using standard gradient methods, such as the quasi-Newton
method BFGS. This requires computing the marginal probabilities over cliques via dynamic
programming methods. Optimization of other loss functions, e. g. Eq. (6a) and Eq. (6b)
involves computing the MAP estimate which can also be attained via dynamic programming
methods.

The important point in the procedure defined above is that ψ functions are not constant
and need to be estimated for each iteration. When all the parameters are fixed computing
ψ(y!

c) involves computing the marginal probabilities. Thus, during the optimization step of
task ", for each training instance, we need to run dynamic program for all tasks "′. Due to
the dependence of these values across tasks, in order to get the most accurate estimates, the
process is required to iterate until marginal probabilities converge. However, since this is an
iterative optimization method, we compute a sufficient approximation as follows. We first
initialize ψ values of all tasks to 0. For each task " from m to 0, where 0th task is the target
task, we assign ψ(y!

. ) to marginal probabilities of task " by running the dynamic program.
Thus, the only ψ contributions taken into account for task " in the first pass are from task
"+1 to task m. A second run of this process allows us to incorporate the contribution from
higher tasks to lower task. A naive implementation of this procedure requires two dynamic
program runs for each task. However, using adaptive inference techniques as described in
(14), the second pass ( and the consecutive passes if desired) can be achieved in logaritmic
time.

We would like to note that for non-probabilistic optimization approaches, e. g. when L is
one of the hinge losses or the exponential loss, we cannot compute exact probabilities but
can resort to pseudo-probability values, via collecting the messages coming into the current
clique with the dynamic program and perform normalization. This procedure is sufficient
since it is not crucial to achieve a proper conditional distribution over the complete Y!, but
to get a local preference of label assignments for the current clique.

Finally optimizing Eq. (5) with respect to D for fixed w, w̄ corresponds to solving the
minimization problem of min

∑
! 〈a!, D

+a!〉. (5) show that the optimal solution to this
problem is given by

D = (AAT )
1
2 /‖A‖T , (9)

where ‖A‖T denotes the trace norm of A.

Algorithm 1 Joint Learning of Multiple Structure Prediction Tasks
1: repeat
2: for each task " do
3: compute â! = argmina

∑
i L(xi,y!; a) + 〈a, D+a〉 via computing ψ functions for

each xi with dynamic programming
4: end for
5: compute D = (AAT )

1
2

‖A‖T
and D+

6: until convergence

Inference involves computing ψ functions iteratively until convergence, until f !(x) =
argmaxT !(x,y!) does not change with respect to the previous iteration for any ".

5 Experiments

6 Related Work

In Section 1, we stated that our approach improves over some previous work, e. g. (8; 16)
via using multitask learning to restrict the function class and designing an approximation

6
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Experiments

Task1: POS tagging evaluated with accuracy
Task2: NER evaluated with F1 score
Data: 2000 sentences from CONLL03 English corpus
Structure: Sequence
Loss: Log-loss (CRF)

Cascaded Joint (no Θ) MT-Joint
POS 92.63 93.21 93.67
NER 58.77(noP) 67.42(predP) 69.75 (trueP) 68.51 70.01

Table 1: Comparison of cascaded model and joint optimization for POS tagging and NER

Inference involves computing ψ functions iteratively until convergence, until f !(x) =
argmaxT !(x,y!) does not change with respect to the previous iteration for any ".

We would like to emphasize that this algorithm is immediately applicable for experimental
settings where there exists separate training data for each task. This is because, training
of individual tasks (Line 3 of Algorithm 1) does not use the correct labels of other tasks,
but uses the estimates of marginal probabilities. Another direction to consider is using the
proposed approximation method for single structured prediction tasks, where dependencies
across different nodes are known to be of different strength. For example, in chain models
with long range dependencies, ψ functions can be defined as the marginal distribution of
nodes that are far from the current node. We are currently to investigating this approxima-
tion method for efficient training of such models.

5 Related Work

In Section 1, we stated that our approach improves over some previous work, e. g. ?? via
using multi-task learning to restrict the function class and by designing an approximation
method to leverage our knowledge of the dependency structure within and across tasks. Rel-
evant research to this paper includes structured prediction learning and multi-task learning
as cited above. With the proposed formulation, we generalize on these methods, by extend-
ing the structure of problems as well as allowing various combinations of loss function and
regularizations. Other related work involves deep networks and recent progress on training
them efficiently via a greedy layer-based unsupervised learning strategy ?. Our approach
does not require the tedious process of manual setting of various parameters of deep net-
works, such as the number of levels, the number of nodes at each level. Moreover, it can be
easier to analyze given the explicit connections to the existing literature.

6 Experiments

We performed experiments with two tasks, where the target task is modelled by a semi-
Markov model ? and the subtask is modelled by a simple chain model. A semi-Markov
model is represented as a sequence of segmentations represented by the segment label l and
beginning position b. Then, the label of the target task is y0 = (s0, . . . , sm) where si = (li, bi)
and m is the number of segments. Note that reducing the variables of the two tasks to get
a single level CRF results in an intractable model. We applied our two level model to
Name-Entity recognition (NER) modelled as the target task and POS tagging modelled
as the subtask. We extracted 2000 sentences randomly from CoNLL2003 English corpus
and performed 5-fold cross validation. The performance is measure via F1 score for NER
and accuracy for POS tagging. We first ran experiments with the cascaded approach. The
accuracy of POS when it is trained individually is 95.16%. We then performed experiments
on NER, where POS tags were removed (noP) and where POS features where generated
using the predicted POS tags (predP) and the true POS tags (trueP). These results are
given in Table 1. The difference between noP and other cascaded NER values indicate the
importance of POS tagging as a subtask for NER. The small difference between predP and
trueP shows that the errors made by the individually trained POS tagger do not have a large
effect on NER. We performed experiments using our learning method without and with task
sharing parameter Θ. With these experiments, we aim to distinguish the contributions of
the joint learning method and multi-task (MT) component of our approach. A comparison
of POS Cascaded and POS Joint show that POS tagging benefits from joint learning of the
parameters. This effect is not large for NER (67.51% as opposed to 67.42%) as expected
from the small difference between predP and trueP. Including the optimization of shared

7
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Conclusion

IE involves complex tasks, ie. multiple structured prediction
tasks
Structured prediction methods include CRFs, Max-Margin
SO
Proposed a novel approach to joint prediction of multiple
SO problems

Using a special approximation algorithm
Using multi-task methods

More experimental evaluation is required
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